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in plasma-like fluids and the electrical explosion of 
conductors: IV. Model of the first splitting stage of an 
exploding conductor 

Nickolas B Volkov and Alexander M rskoldsky 
Russian Academy of Science, U d  Division, Institute of Electrophysics, 34 Komsomolskaya St, 
Ekaerinburg 620219, Russia 

Received 14 November 1994 

Abstract. This paper is a continuation of a series of papers (1993 J. Phys. A: Mnfh. Cen 26 
6635,6649,6667). and makes use of the same assumptions. The paper presents a model of the 
first stage of the spatial scale splitting of hydrodynamic vortex shuchlres. It is shown that this 
model is one of a first-order non-equilibriom phase transition, which leads to the forming of 
a heterogeneous low-conducting c m n t  state of the exploding conductor. As this takes place, 
its dynamics are determined by Wee intemting order pme te r s .  As a result the exploding 
conductor is broken down into metallic particles with the size of the conductor diameter. It 
is shown that the transition from a high- to low-conducting state by the splitting of the spatial 
scale is energetically more profitable than the transition by excitation ofcunent voiiex s w c m .  
Parameters of the model, which describe the formation stage of hydrodynamic and current vonex 
m c t m s ,  are identified by experimental results for the electrical explosion of conductors. The 
problems which emerged while bringing together the models describing these stages are also 
discussed. 

1. Introduction 

This paper is the fourth part of our series 11-31 where the second-order non-equilibrium 
phase transition (NPT) model was conshucted [l]; the dynamics of hydrodynamic and 
current large-scale structures was studied in plasma-like current-carrying fluids [2], and 
a comparison was made of the computer experiment results and the results of experiments 
on the electrical explosion of conductors (EEC) [3]. The aim of the present work consists 
of constructing and studying a model of the first stage of splitting the hydrodynamic vortex 
structures (according to the hypothesis expressed in [l] the spatial scale splitting L caused 
by doubling the excitation wavenumber (k)). Towards the end of this stage the exploding 
(current-canying) conductor is broken down into transverse strata, and the electric current 
is interrupted. As shown below (see section 3) the model of the first stage of the spatial 
scale splitting is a first-order NPT as opposed to the second-order NPT studied in [l-31. 

2. Model of the non-equilibrium phase transition 

An analogy between initial stages of the turbulence nucleation and the EEC, as deduced 
in [4], is applied below to construct a model of the first stage of the spatial scale' splitting. 

0305-4470~5/071789+09$19.50 @ 1995 IOP Publishing Ltd 1789 



1790 

Here, as in [1,4], we shall restrict ow consideration to an incompressible conducting fluid 
the transport coefficients of which-the electric conductivity (n) and the shear viscosity 
( q j a r e  constant. This enables us to focus on the dynamical nature of the NPT discussed 
here. 

A set of magnetohydrodynamic (m) equations is an input to an infinite-dimensional 
model for constructing low-dimensional NPT models. In our case it becomes 

( V . u ) = O  (1) 

(2) 
au - + (U. V)U = -po-'VP + (43?po)-'[[v, HI, HI + UAU 
at 

(3) a t  
where U, P, H and po are the velocity, the pressure, the magnetic field strength and 
the mass density, respectively; U = qp0-I and U, = c2(4na)-' are the kinematic 
viscosity and the magnetic viscosity, ~respectively; A is the Laplacian; c is the vacuum 
light velocity and V is the nabla operator. From equation (1) it follows that U = [V, A] 
where A is the vector potential of the velocity, which is known to be accurate within 
the gradient of a scalar function. (Below, the Coulomb gauge of the vector potential is 
applied (V . A) = 0.) We assume, using azimuthal symmetry, that the magnetic field 
strength H and the vector potential of the velocity A are only one azimuthal component: 
H = (0, H(r, z ,  t ) .  0)  and A = (0, @(r, z ,  t), 0). In this case from (1) it follows that 
U = ( ~ ~ ( r , z , f ) , O , ~ ~ ( r , z ,  t ) )  = (-z,O, 9). The magnetic field strength at the 
conductor boundary equals H(re, z ,  r )  = Horoi(t)(Zor,(z, t))-', where HO = 2Zo(cro)-' and 
rc(z. t) = ro(1 +D(z ,  t)ro-'): ro and ZO are the initial conductor radius and the characteristic 
electric current: D(z,  t )  is the distance of the moving conductor radius from the initial one. 

Let us Write (1H3) in a dimensionless form, using as the base sizes the elecfzic current 
ZO, the initial conductor radius ro and the magnetic viscosity U, (the term is which break 
down the azimuthal symmetry are disregarded, as the threshold of the bending excitations 
is well beyond that of the excitations discussed below): 

a(A$-$r-')  - -a ($ ,A$-$r - ' )  H B H  
at a(r ,z)  r az 
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aH - + (uL-V)H = ( H .  V)U+ u,AH 

- + Rs-- 
+s[A(A$ - +r-') -+(A$ -er-')]  

where 
a@, b) a(ra) ab aa a(rb) 
a(r , z )  rar az az rar 
- = - - - - 

and R = H0~r0'(2rrpou,u)-' = ~A'rO'(L+,#)-' =~ Pemzs-' is the magnetic Rayleigh 
number and U A  = H 0 ( 2 x p o ) - ' ~ ~  is the Alfven velocity; Pe, = vArou,-' is the magnetic 
P6clet number and s = vu,-'. Equations (4) and (5) agree accurately with the replacement 
of the Cartesian coordinate system by the cylindrical one and the replacement of the heat 
conduction equation for the diffusion of the magnetic field with Saltzman equations [5] in 
the theory of the Benard effect [6] in the case of the assumed azimuthal symmetry. 

The solutions of (4) and (5) are sought in the form: H(r, z ,  t) = HI (r, z ,  t )  + h(r, z ,  t) 
and @(r, z ,  t) = z ,  t )  + rp(r, z ,  t ) .  For the unperturbed solutions HI and $1 we take 
the following expressions: H1(r, z ,  t )  = Z(t)r(l +a)-* and $l(r, z ,  t )  = c,(z, t )r ,  where 
8 = Dro-' and Z = i(t)Zo-', since our interest is only in constructing the low-mode NPT 
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model, giving a qualitative description of the transition to the low-conducting current state 
of a conductor. The expression for H I  provides the homogeneous distribution of an electric 
current density on the cross section of the conductor. The expression for $1 gives an 
approximate description of the heat expansion of the conductor, providing the nearly low 
behaviour of the radial velocity. 

We obtain two sets of equations for calculating e,  8, (o and h, restricting oneself to the 
terms, which are linear in the excitations, and using the expressions for @I and H I :  

(6) 
ae ac, ae 2 ,as a2e a%, 
-=2e--2~,--2RsI  (1+8)--+s- where e = -  . 
at az az az az2  a22 

d l  
dt 

as ac, azs  as 
at az  az  azz  ZC<- -0.5(1 +6)-  + - -3(1+S)-' +(1 +6)(21)-'- ~ (7) _ = _  

and 

as -2Ih(l +cT)-~- + 1(1 +a)-'- 
az  

+s(A(Arp - rpr-') - r-'(A(o - (or-')) (8) 

Let us assume the following boundary conditions ( I  is the conductor length): 6(0) = S(1) = 
cs(0) = cs(l)  = = e(0) = e(I) = 0 and (o(0,z.t) = (o(1 + S , z , t )  = 
(o(r, 0, t )  = (o(r,l, t )  = h(0, z ,  t )  = h ( l + &  z ,  t )  = 0. 

The dynamical system processes~(equati0ns (6)-(9)) are broken down into two stages. 
In the first stage, which is equal to condition re = ro = constant, the large-scale vortex 
hydrodynamic and current structures are developed. Their dynamics are determined by a 
set of three ordinary differential equations. This set can be obtained from (8) and (9), using 
the following permutation [l]: 

= 

h(r, z .  t )  = (nr1)-'(1/2Y(t)cos(nkz)Ji(glr) - 2Z(t)J0(glr)Jl(glr)) (1 1) 

where gl =3.83171 corresponds to the first zero of the Bessel function Jl (x) ,  r1 = RR,-' 
is the control parameter, R, = 6 4 g 1 ~ z ~ ( b ~ ( 4  - b))-l is the critical Rayleigh number, and 

(12) 
(13) 

b = 4(1+ (nkgl-1)2)-1: 

x = s(-x + I Y )  

z = -(ngl-' XY + b Z )  
Y = ngl-'x(-Z+ngl-'rlI) - Y 

(14) 

where the point symbol "' is used to denote the differentiation operator for the dimensionless 
time t = tt0-I; to = br0~(4gl~v,)-~ is the basic time constant. (Below, we denote the 
dimensionless time '7'. as usual, by 't'.) Equations (12) and (13) must be added to equations 
for an external elechic circuit and a relation between the conductor voltage drop and the 
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electric current. In the case re = ro = constant this relation is determined by the following 
expression [l]: 

N B Volkov and A M Iskola!sky 

u(t) = u,(t) + u,(t) = ~,10(c*~)-~i + R,I~(I -alrI-'z) (15) 
where L, and Rp = I(nr&r)-' are the initial conductor inductance and the initial conductor 
resistance, respectively; a1 = n@(gl). 

Let us make a few remarks in preparation for constructing a model for the second stage 
where the current-carrying conductor is stratified. (Below, these remarks are exploited in 
the construction of a model for the first splitting stage of the hydrodynamic structures spatial 
scale.) 

As shown in [1,4], the critical Raylei6 number exhibits aminimum value: &.mio = 978 
corresponding to b = 8. As this DCCUTS, the vortex spatial structure with the wavelength 
1 = rok0-I = 1.159ro is excited as soon as the control parameter rl reaches its 
critical value (re). (The dynamical system (equations (12x14)) loses its stability by 
rl = r*.) Figure 1(u) shows a field of the hydrodynamic velocity, corresponding to 
the vortex structure, and (b)  shows a change of along the conductor axis, where 

2.32r0 

1.16r0 

0 

-1.16r0 

-2.32r0 

(4 ( b )  

H p  1. (a) The hydrodynamic velocity field and (b) the relation ww,-' as a function 
of z, where o = &(t)sin(rrkz) is the magniNdE of the admuthal component of the vector 
O=[V,ul;w,=4~(bk)~'X(t)h~g~r,):r, isasolutionof~eeequafion: dJ,(gir)/dr=O. 
(9 Denote locations of Joule-heating sources. 
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o = om@) sin(lrkz) is the magnitude of the azimuthal component of the vector 0 = [V, U]; 
om = 4~(bk)-'X(t)Jl(glr.): r, is the solution of the equation: dJl(glr)/dr = 0. This 
vortex shucture presents a system of vortex rings such that its total angular momentum is 
zero. The vortex rings go along the axis because the direction of motion is decided by 
the direction of the vector 0 = [V, U] (in figure l(b) this direction is shown by arrows 
applied to points where 101 = 10lm, corresponding to ow,,,-' = &l). Figure 1 shows 
that a ring slit may spring up between the vortex rings with opposite-directed vectors 0. 
The ring slit may be caused by expansion tensions which give rise, as shown in [7], to an 
excitation of the viscosity liquid surface at points where z = (2n+ 1)h. n = 0, 1, . . . , N - 1. 
@ = I(2Q-l is the number of vortex rings, packed in the conductor length. Below we 
assume that N has an integer size; direct observations of the stratification of the exploding 
conductor [SI support this hypothesis.) An analysis of the model (equations (12) and (13)) 
made in [l] lets us express the hypothesis as a set of spatial scale splittings, performed by 
the doubling of the excitation wavenumber: ko+kl = O.Sko+kz = 2k,,+k, = 2kz-t . . .. 
(The basis for this hypothesis is shown in figure 1 where we can see pairing of the vortex 
rings coming from the opposite direction to the vector 0.) 

Let us conshuct the model of the initial stage of splitting correspondhg to the transition 
ko+kl = O.%O (A1 = 2ho = 2.32ro). (This size corresponds well to an experimentally 
obtained distance between strata [3,8].) The solution of (6) and (7) is sought in the 
form of a periodic soliton-like function sufficiently restricted for conservation of the liquid 
incompressibility: 

N 

6(z, t )  = -A(z)Cexp(-((2n +'l)h - z)") = -A(t)F(z) 
"=O 

where the parameter 'm' determines the width of the ring slit. (Below, rather than 
considering ring slits, we consider solitons increasing into the interior of the conductor.) 
From expressions for the radial velocity 'U,': U, = -9 = -r% and the velocity of the 
conductor surface 'ue': U, = -(1 +a)% = it follows that 

.. .. 

It can be proved by placing (16) in (7) and granting for (17) that the amplitude A is 
determined from the following equation: 

dln((1 - AF)Z-') ~- ' 4A dA dF(iz F(E)(l - AFE))-'dt) dt 1 - A F  dt dz 
A dZF  -__- - 

1 - A F  dzZ (1 
We calculate the amplitude A, applying boundary conditions: F((2n + 1)A) = 1, 
dFM2ril A )  - 6-F 2ntU.l - 0 = 0, I , ,  , , , N - 1, Then dlD((l-A)'-') = 0, from where it 
follows that A(t) 1 - IL-'. (The critical cunent I* corresponds to the nucleus of the 
soliton, increasing into the conductor, from its surface.) Hence (16) takes the form of 

& ) -+- > dl  

~ ( 2 ,  t )  = -(I - I t - ' )Cexp(-((2n + I)A - z)") = - ~ ( t ) ~ ( z ) .  
N 

(19) 

Equation (7) with S(z,t) in the form of (19) is correct for all m 2 2, not only for 
z = (2n + l)h, but also for other z, as S(z, t )  has the delta-function-like form. (Upper 
bounds of the parameter m furnish additional information, outside the scope of the present 
model.) 

"=O 
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The following conditions are correct at the soliton peak: for z = (2n i- I ) k ,  n = 
0 , l  ,..., N - 1 :  H -  a h  - 0 , a(* ‘2 I-‘) 2: (Aco - qr-2)z-1, c, a(AVpr-’) ar N (Aq - q+)%, 
It can be proved that by granting these conditions and also that 1 + 6 is a periodic delta- 
function-like function, that (8) and (9) are rewritten in the form: 
a(Aq -vi--’) a(q, A9 - qr-’) ac, ac, a(Ap-9r-’) 

at az  az  ar 

N B Volkov and A M Iskoldsky 

- - -  ~-2(A~-qr - ’ ) -+-r  

The solutions of (20) and (21) are sought in the form: 

h(r,z, i) = ( i r r l ) - ’ ( ~ Y ( t ) c o ~ ( x k z j J I ( g l r ( 1  +@-I) 

Let us deduce the set of three ordinary differential equations which determine the temporal 
behaviour of the interacting amplitudes-order parameters-X, Y and 2, placing (22) and 
(U) into (20) and (21) and granting that the amplitudes X, Y and 2 are defined by processes 
at the peak of the soliton, increasing into the conductor. It becomes 

-2Z(t).h(glr(l+ 6)-9Jl(glr( l+ &)-I))  . (23) 

f = -?r(glZ)-’Z*ZX + +(nL)’(gl’Z)-’rlX - 0.25b(l+ (xkZ(glZ*)-’)’)Y (25) 
2 = - x ( ~ ~ Z ) - ~ Z , X Y  - b(Z*Z-’)’Z. (26) 

u( r )  = +U&) = LpZo(czto)-’~ + R,Io(b~(t)I-(bz(r)Y +b&)Z)r1-‘) (27) 
where @ = LsI is the magnetic flux coupled with the conductor inductance; L&), bl(t), 
bz@) and b3(t) are coefficients, considering the change of the inductance and the resistance 
caused by the soliton’s increase into the conductor. 

3. Discussion 

In [1,21 we showed that the dynamical system (equations (12)-(14)) has a subcritical 
bifurcation. Under this bifurcation, any trajectory of the system in phase space by 
rl > r, (r,, is the control parameter (rl) value which corresponds to the stability level; 
for I = 1 = constant, r. = 1.488) goes to infinity during a finite time. In the 
case of the direct current this singularity has the form X = -2.442(& - t)-’ and 
Y = 2 = -2.442s-’(t. - f)-’. Also, in the case of the inductive energy source this 
singularity has the form X-(r, - f ) - I ,  Y-Z-(t ,  - r)-3/2 and I - ( &  - t)-1/2. (The time 
characteristic quantity ‘t*’ can be called an explosion point because this transition is called 
explosive [91.) In both cases the power ‘P = UrZ’, which dissipated into the exploding 
conductor, behaves as P - (t* - t)-’. 

In this case the conductor voltage drop is defined by the following expression: 
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The above obtained set of (23)<25) agrees accurately with the set (12x14) by I = 1, 
and not-too-big values of dZ/dt. As this takes place, the bifurcation type is conserved. The 
initial conditions for (23)-(25) are defined by (12x14). However,~as this takes place, an 
indeterminacy of the transition time 'tr' from one set to the other has evolved. The singular 
behaviour of amplitudes X, Y ,  Z ind I are defined by the expressions I - (t. - t) ' I2 and 
X - Y - Z - (t* - t)-'/'. Obviously, the electric current is not singular, but the behaviour 
of the electric current derivative is singular: I - (t* - t)-'l2. Since, the behaviour of the 
conductor voltage drop is defined by the expression UT - Y - Z - (t* - t)-'/*, the power, 
which dissipates into the exploding conductor, behaves as P = U,l - (t, - t ) O  = O(1). 
Consequently, the formation of the conductor low-conducting current state as a consequence 
of the conductor splitting-the conductor stratification or the spatial scale splitting-is 
energetically more profitable than the generation and overspeeding of the current vortex 
structures. If this holds, the spatial scale splitting is a first-order non-equilibrium phase 
transition (which leads to the formation of metallic particles with a size of radius ro). 
At the increase of the soliton (the ring slit) convective influx of magnetic field strength 
'H, = 21,(cr0)-' into the conductor is realized. Towards the end of the conductor 
stratification the electric current density at its axis is directed to infinity. Obviously, the 
model of the first stage of the spatial scale splitting obtained above (equations (23x25)) 
loses its validity for 1 + 8 -+ 0 (8 -+ -1). Actually the validity of the model breaks down 
some time before (this is caused by the disregard of the next stages of the spatial scale 
splitting). 

The problem of the identification of model parameters defined by (12H14) has been 
solved, using experiments on the electrical explosion of conductors. (One of these 
experiments has the following conditions: the exploding conductor is a copper wire 54 pm 
in diameter and 4.5 cm long; the circuit capacity is 0.486 pR the circuit inductance is 
0.568 pG; the circuit stray resistance is 0.14 S2, and the charging voltage is 22.144 kV.) 
This identification has been made to clear up the possibility of practical applications of the 
above-suggested NFT models and for finding the transition time size from (12)-(14) to (23)- 
(25). On this occasion, the model suggested in [IO] has been used with the description of 
the heating stage of @e exploding conductor. Problems spring up on joining the models and 
accommodating the calculated results to the experiment. These problems have been caused 
by the necessity of finding not only the model parameters, but also the initial magnitudes 
of the X, Y and Z amplitudes. Figure 2 shows results of this accomodation: figure 2(a) 
shows the conductor voltage drop U,, and (b) shows the electric current I(t), which was 
obtained experimentally, and the current vortex structures at characteristic time points; ( c )  
corresponds to the end of the heating stage (t = 0.301 ps); (d) corresponds to the maximum 
value of the electric current (t = 0.308 ps), and (e) corresponds to the inflection point of 
the experimental curve of the electric current (t = 0.415 ps). (This point corresponds to the 
maximum value of the conductor effective resistance.) Figure 2(e) shows that the inflection 
point corresponds practically to a completely covered channel for the electric cnrrent, being 
closed through the external electric circuit. From this figure we notice that the transition to 
the model defined by (23x25) can be performed within a range of time points, beginning 
with t x 1?.4-0.415 ps. This indeterminacy bas been caused by an information loss exhibited 
by a reduction of the input (1)<3) to (23)-(25). This indeterminacy can be diminished if 
an upper limit is given for the value of the current derivative. The transition to (23)-(25) 
can be realized as soon as the current derivative remains below this value. 

The results are found to be in direct relation to the initial size' of X. This is due to the 
fact that an answer to the question 'to explode or not to explode' is determined not only 
by the control parameter size, but also by the initial level of excitations as well. On the 
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0 
0 0.5 t, ps 1 

107 w!*p;,,$,,,# 5 ( , , ,  

* * 
* * 
h"*t 

0 
0 0.5 t, ps 1 

( d )  

Figure 2. Accommodation resulLs for the model of (12x14)  from experiments with exploding 
electrical wnductors. (The experimental conditions are described in Section 3.) The pattern (a) 
shows the conductor voltage drop; (b) shows the electric current (the full c w e s  correspond to 
Iheoretical data. aod points wnespond to experimental ones); (e). (d )  and (e) show the current 
vortex svuchlres for the chmcteristic time points: (c) t = 0.301 ps. ( d )  1 = 0.308 ps and (e) 
t = 0.415 us. 

curve of the conductor voltage drop (figure 2(u)) a step-like behaviour is clearly seen. This 
steplike behaviour is caused by the melting of the exploding conductor. Precisely, during 
this step-like behaviour the current vortex structures are developed (see figures 2(c)-(e)). 
The estimate of the shear viscosity, which was made from model parameters which were 
obtained as a result of the accommodation of the calculated data for the experiment, gave a 
viscosity value which approaches the table values of the liquid metal's viscosity. This fact 
counts in favour of the above hypothesis on the local constancy of the transport coefficients. 

As further arguments in support of the above model, the direct observation results of  the 
stratification of copper wire of 0.58 mm diameter can be mentioned. (The electric circuit 
has the following parameters: the period of vibration is 40 ps, the capacity is 4.2 pF, and 
the charging voltage is 30 kV [SI (see also [3]).) These observations show that the time 
interval between the beginning and the end of the conductor stratification equals 200 ns. 
This value is essentially less than typical sizes of the sound time. Besides, the experiments 
for the preparation of the ultradispersed powder by the electrical explosion of conductors 
[Il,  121 show that one obtains a large fraction with the size of the conductor diameter. (Its 
concenhtion is small, but, in practice, contains all the mass of the EEC products.) 
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4. Conclusion 

In this paper the first-order non-equilibrium phase transition in current-carrying plasma- 
like fluids has been investigated. The conductor stratification and the electric current 
interruption-the forming of the heterogeneous low-conducting current state of the 
conductor-are defined by this model as the interaction between the hydrodynamic velocity 
field (U(?, f)) and the magnetic field (H(r ,  t)). In this way, the formation of the 
low-conducting state through the splitting of the spatial scale of hydrodynamic vortex 
structures-the first-order non-equilibrium phase transition-is energetically more profitable 
than through the excitation and overspeeding of current vortex structures-the second-order 
non-equilibrium phase transition. 
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